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Abstract—A problem of output-feedback adaptive compensation of external unknown deter-
ministic disturbances in linear multidimensional plants is considered. The proposed solution is
based on an adaptive implementation of the internal model principle together with a special ob-
server. The form of the observer allows us to obtain a regression model of the multidimensional
disturbance and design an adaptive controller with a number of tuning parameters equal to
the number of unknown coefficients of the characteristic polynomial of the disturbance model.
Under certain conditions, the dynamic order of the observer is significantly lower than that of
well-known solutions.

Keywords : adaptive compensation of external disturbances, internal model principle, multidi-
mensional systems

DOI: 10.31857/S0005117925040013

1. INTRODUCTION

The internal model principle is one of an effective and well developed methods for asymp-
totic compensation of external deterministic disturbances due to many practical applications such
as active vibration systems [1–3], internal combustion engines [4, 5], rolling mills [6, 7], contin-
uous casting process [8], computer hard disk drives [9, 10], seismic protection systems [11], off-
shore cranes [12, 13], systems for ripple reduction in current converters [14] and in synchronous
machines [15], etc. According to this principle, an external disturbance is modelled as the output
of an autonomous dynamic system (exosystem), and this exosystem is replicated in the structure
of the closed-loop system for the disturbance compensation. Initially, the internal model principle
was developed for the linear systems and the linear model of external disturbances with known pa-
rameters [16; 17; 18, Chapter 4]. However, the assumption about the knowledge of the disturbance
model parameters reduces the practical relevance of the method. The case when only the class
of disturbances is known in a priori, but not the parameters of a disturbance model, is of great
practical significance.

An adaptive version of the internal model principle, when the parameters of an exosystem
model are unknown (see [19, Section 1.4; 20] and the references therein) was suggested for the
compensation of unknown disturbances. This approach was developed for both systems with the
scalar input and the scalar output [21–25] as well as for multidimensional systems with the state-
feedback control [19, Section 4.2; 26; 27] or with the output-feedback [20, 28]. A special class is
represented by multidimensional systems with the input disturbance [29].

However, well-known solutions of the output-feedback disturbances compensation in multidi-
mensional systems using the internal model principle (both non-adaptive [17; 18, Chapter 4] and
adaptive [20, 28]) include construction of a special observer (dynamic filter, precompensator) for
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each channel of a multidimensional system. The dimension of this observer is equal to the dimen-
sion of the disturbances generator model. Therefore, the total dimension of the used observers is
equal to the product of the dimension of disturbances generator model by the number of channels in
a control system. It causes increasing the dynamic order of the controller as well as of the number
of adjustable parameters.

It is shown in the paper that under additional nonrestrictive assumption about the block-diagonal
structure of the disturbance generator it is possible to design a control system with one observer
of dimension equaled to dimension of the disturbance generator. As a result, both dynamic order
of controller and the number of adjustable parameters are reduced significantly.

The solution proposed is based on the approach reported in [19, 30, 31] and consists in construc-
tion of a special external disturbance observer that makes it possible to get the convenient unmixed
parametrization of a disturbance.

The paper is organized as follows. In Section 2, the problem statement is described. In Section 3,
a disturbance observer is presented, and the problems of its construction for multidimensional
systems are discussed. In Section 4 and 5, an adaptive controller is designed. An example with the
simulation results is presented in Section 6.

Notations: |y| is the Euclidean norm of a vector y; s is a complex variable; W (s)[δ] denotes
a signal transformation δ (scalar or vector signal) by dynamic block with the transfer function
(or the transfer matrix for a vector signal) W (s).

2. PROBLEM STATEMENT

We consider the multidimensional time-invariant plant{
ẋ = Ax+B(u+ δ), x(0),

y = Cx,
(1)

where x ∈ R
n is the state vector, u ∈ R

m is the vector of control signals, y ∈ R
m is the vector

of output variables, n � m, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n are known matrices with constant

entries, δ ∈ R
m is the vector of unmeasured external disturbances.

Assumption 1. The following assumptions are accepted regarding the plant (1):

A.1.1. the triplet (A,B,C) is fully controllable and observable, and matrices B and C have
rank, i.e. rank B = rank C = m;

A.1.2. the state-space model (1) is minimum phase;

A.1.3. the vector of output variables y is measurable only, while the state vector x is not acces-
sible for measurements.

Remark 1. Assumption A.1.1 implies that the system (1) is controllable with regard to the
vector of the output variables y (see the definition and the criteria in [32]).

Remark 2. In this paper, the minimum phase model (1) is the model that does not have invariant
zeros or all its invariant zeros have negative real parts. An invariant zero is a complex number s0,
which substitution into the Rosenbrock matrix (that is, for s = s0)

P (s) =

[
sI −A B
−C 0

]

reduces the column rank of the matrix [33, p. 237]. For systems with the same number of control
signals and the output variables having square Rosenbrock matrix, it means singularity of this
matrix for s = s0.
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Assumption 2. The external disturbance δ = [δ1, . . . , δm]� is such that:

A.2.1. each its component δi (i = 1, . . . ,m) can be represented as the output of the linear
generator

{
ξ̇i = Γiξi, ξi(0),

δi = h�i ξi,
(2)

where ξi ∈ R
qi is the state vector, Γi ∈ R

qi×qi is the matrix with constant parameters, all eigenvalues
of which are on the imaginary axis and simple, hi ∈ R

qi is the vector of constant parameters;

A.2.3. parameters of the matrices Γi and the vectors hi are unknown, while the dimensions qi
are known;

A.2.3. the pairs (h�i ,Γi) are fully observable.

Remark 3. The general exosystem generating the disturbance δ can be represented in the form

{
ξ̇ = Γξ, ξ(0),

δ = Hξ,
(3)

where ξ = [ξ�1 , . . . , ξ�m]� ∈ R
q, matrices Γ = diag{Γi} and H = diag{h�i } (i = 1, . . . ,m) are block-

diagonal, and q =
∑m

i=1 qi.

The following problem is solved in the paper.

Problem 1. The problem is to design an output-feedback control law providing the boundedness
of all the closed-loop signals and the achievement of the limiting equality

lim
t→∞ |y(t)| = 0. (4)

In other words, the plant stabilization together with the external disturbance compensation is
required simultaneously. Since according to Assumption A.2.3 the external disturbance is unknown
a priori, then the classical internal model principle [16–18] is not applicable. Therefore, in order
to solve the problem, an adaptive modification of the internal model principle [19, 21, 31] will
be used. The main difference from well-known solutions developed earlier for multidimensional
systems [19, 26] is that the vector of the output variables y is available for measurements, however
the whole state vector x is not. As shown below (see Section 3.2), due to some principal feature the
problem of output-feedback compensation of unknown disturbances for multidimensional systems
can not be solved by applying approaches developed for the single input - single output systems.

The problem will be solved in three steps. First, by applying a special observer a parameterized
model of the external disturbance in the form of a linear regression with a constant matrix of
unknown entries and the physically implementable regressor (measured/calculated by the control
and the output) will be obtained. Then an adaptation algorithm for the compensating component
of the controller will be derived. Finally, a plant state observer and stabilizing component of the
controller will be designed.

3. DISTURBANCE OBSERVER

3.1. Canonical Form of an Exosystem and a Disturbance Parameterization

For the design of a scalar disturbance observer in the output-feedback control, the following
lemma is useful since it allows us to express the disturbance δi via the filtered disturbance δfi =
wi(s)[δi], where wi(s) is the minimum phase asymptotically stable transfer function [19, p. 315].
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Lemma 1. The scalar disturbance δi can be represented in the form

δi = ψ�
fiξfi + εi, (5)

where ψfi ∈ R
qi is the vector of constant unknown parameters, εi exponentially decays, the regressor

ξfi ∈ R
qi is the state vector of the observer

ξ̇fi = Giξfi + liδfi, (6)

in which Gi ∈ R
qi×qi is an arbitrary Hurwitz matrix, li ∈ R

qi is a constant vector selected so that
the pair (Gi, li) is controllable.

For the methodological purposes, we represent the proof of Lemma 1 since it is different from the
proof reported in [19, p. 315]. Based on its analysis in Section 3.2, we will show the main problems
that arise in multidimensional systems.

Proof. Assume the matrices (Afi, bfi, cfi) define the minimal realization of the transfer func-
tion wi(s) and

δfi = c�fiχi, χ̇i = Afiχi + bfiδi,

where χi is the state vector of the filter w(s) with the minimal realization. As it is known [18, p. 87],
the forced component χ∗

i of the state vector χi for the steady-state model (i.e., without taking
into account the exponentially decaying transition component) can be represented in the form
χ∗
i = Mξiξi, where the transformation matrix Mξi is the solution of the Sylvester equation

MξiΓi −AfiMξi = bfih
�
i . (7)

Since Afi is Hurwitz, while the eigenvalues of matrix Γi are on the imaginary axis, then this matrix
equation has a unique solution Mξi [18, p. 370]. As a result,

δfi = h̄�i ξi + ε̄i, ξ̇i = Γiξi,

where h̄�i = c�fiMξi, and ε̄i exponentially decays. Since the filter wi(s) is minimum phase, then the

pair (h̄�i ,Γi) is observable. For the forced component ξ∗fi of the state vector ξfi of the filter (6), the
equality ξ∗fi = Mfiξi holds, where the transformation matrix Mfi is the solution of the Sylvester
equation

MfiΓi −GiMfi = lih̄
�
i . (8)

Since the matrices Γi and Gi have no common eigenvalues, the pair (Gi, li) is fully controllable,
the pair (Γi, h̄i) is fully observable, then there exist a unique nonsingular matrix Mfi satisfying
the Sylvester equation (8) [34, p. 240]. Then, ξi = M−1

fi ξ
∗
fi, and taking into account the second

equation of (2) we can write (5) with ψ�
fi = h�i M

−1
fi .

Remark 4. It worth noting that the solution of matrix equations (7) and (8) is not required for
design of the filter (6) and the regression model (5). Instead, it is sufficiently to prove the existence
of an invertible matrix Mfi.

3.2. Filtered Unmixed Disturbance

Let us introduce the dynamic block in the form

˙̂x = Ax̂+Bu+ Ly(y − Cx̂), (9)
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where x̂ ∈ R
n is the state vector with arbitrary initial condition x̂(0), and matrix Ly is chosen so

that the matrix AL = A−LyC is Hurwitz and its eigenvalues do not coincide with invariant zeros
of the system (1). Then, for the vector ε = x− x̂ we have

ε̇ = ALε+Bδ, ε(0) = x(0) − x̂(0). (10)

We define the filtered disturbance as

δf = y − Cx̂, (11)

for which δf = Cε holds. Then δf = WL(s)[δ] + εf , where WL(s) = C(sI −AL)
−1B, and εf =

CeALtε(0) exponentially decays.

If m = 1, then the regressor of model (5) can be formed using the output of observer (9). Let us
investigate if it is possible to extend Lemma 1 to the case of multidimensional systems by replacing
the filter with the scalar input (6) with a filter with the vector input

ξ̇f = Gξf + Lδf ,

where G = diag{Gi}, L = diag{li}. In the case considered, the vector filtered disturbance δf is the
output of a model (without taking into account the exponentially decaying term)

δf = Cε, ε̇ = ALε+Bδ,

and the Sylvester equation (7) takes the form

MξΓ−ALMξ = BH, (12)

and has the unique solution Mξ for the given conditions. Then, the filtered vector disturbance δf
can be represented in the form

δf = H̄ξ + ε ξ̇ = Γξ,

where ε exponentially decays, while the matrix H̄ = CMξ is not generally block-diagonal. Then
equation (8) takes the form

MfΓ−GMf = LH̄. (13)

As known, for the case of multidimensional systems (see [34, p. 259] and Example 2.9, p. 54 in [26])
the condition, according to which the matrices Γi and Gi have no common eigenvalues, while the
pairs (G,L) and (Γ, H̄) are fully controllable and observable, is necessary conditions, however not
sufficient for the existence of a nonsingular solution Mf . In the case of singularity of the matrix Mf ,
the parametrization δ = Ψξf + ε, where Ψ = HM−1

f , does not exist. Therefore, Lemma 1 can not
be extended to the case of a vector disturbance.

A possible way to overcome this problem is to reduce the matrix H̄ to a block-diagonal form.
Then, the equation (13) can be decomposed into m independent ones of the form (8) ensuring
nonsingular solutions.

Let us use the following auxiliary statement.

Lemma 2. Under assumptions A.1.1–A.1.3, then there exists (possibly not unique) physically
implementable asymptotically stable m × m transfer matrix Q(s) such that the transfer matrix
D(s) = Q(s)WL(s) is the asymptotically stable minimum phase and block-diagonal. One of possible
realizations of matrix Q(s) is defined by the equation

Q(s) = adjWL(s), (14)

where adjWL(s) is the adjoint of a matrix WL(s). In this case, D(s) = diag
{

β(s)
α(s)

}
, where

β(s)
α(s) = detWL(s).
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Proof. Since the plant (1) is fully controllable and observable, the matrices B and C have full
rank, and the matrix L is chosen so that the eigenvalues of the matrix AL do not coincide with
invariant zeros of the system (1),1 then detWL(s) �= 0, and the inversion W−1

L (s) = α(s)
β(s)adjWL(s)

exists. At the same time, due to the asymptotic stability of WL(s) and the minimum phase property
of the plant, the polynomials β(s) and α(s) are Hurwitz and adjWL(s) is asymptotically stable (1)
[35, p. 7]. Then, from the equality W−1

L (s)WL(s) =
1

detWL(s)
adjWL(s)WL(s) = I we have (14).

Straightforward calculations of the matrix Q(s) for other block-diagonal forms D(s) shows that
this solution is not unique (see the Example in Section 6 “Simulation results”).

Let us choose the matrix of a successive compensator Q(s) (for example, in form (14)) and make
the filtered unmixed disturbance

δ̄f = Q(s) [y − Cx̂] . (15)

For δ̄f we can write

δ̄f = diag{wi(s)}[δ], i = 1, . . . ,m, (16)

or
δ̄fi = wi(s)[δi],

where wi(s) are minimum phase asymptotically stable transfer functions (for example, for Q(s) =

adjWL(s) we have wi(s) =
β(s)
α(s) , i = 1, . . . ,m), and δ̄fi is ith coordinate δ̄f .

3.3. Parameterization of the Initial Multidimensional Disturbance

However, the plant (1) is affected by not the filtered unmixed disturbance δ̄f , but by the initial
disturbance δ. Taking into account Lemma 1 and (16), we can formulate the following lemma.

Lemma 3. Under assumptions A.1.1–A.1.4 and A.2.1–A.2.3, the disturbance δ acting on the
plant (1) can be represented in the form of the regression model

δ = Θξ̄f + ε̄, (17)

where ε̄ exponentially decays, the regressor ξ̄f is the state vector of the observer

˙̄ξf = Gξ̄f + LQ(s) [y − Cx̂] (18)

with an arbitrary initial condition ξ̄f (0), the matrices G, L, and Θ are block-diagonal, i.e.,

G = diag{Gi}, L = diag{li}, Θ = diag{ψ�
fi},

and ψfi ∈ R
qi are vectors with unknown constant parameters (i = 1, . . . ,m).

Indeed, the dynamic filter (18) with the multidimensional input δ̄f (15) is splitted into m inde-
pendent filters (6) with the scalar inputs δ̄i = wi(s)[δi] and the states ξ̄fi what corresponds to the
conditions of Lemma 1.

Thus, Lemma 3 reduces the uncertainty of the disturbance δ to the parametric uncertainty of
the regression model (17) with the matrix of unknown parameters Θ and the physically realizable
regressor ξ̄f . In this case, the plant model (1) can be written as{

ẋ = Ax+B(u+ Ξθ + ε̄), x(0),

y = Cx,
(19)

1 it is known, state feedback – in this case, it is LyCx – does not affect the zeros of the closed system [34, p. 237].
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where Ξ = diag{ξ̄�fi} ∈ R
m×q is the block diagonal matrix regressor that has m vector blocks ξ̄�fi

on the main diagonal, θ = [ψ�
f1, . . . , ψ

�
fm]� ∈ R

q is the vector of unknown parameters constructed

with the diagonal blocks ψ�
fi of the matrix Θ.

Remark 5. As an alternative approach, however not optimal dynamic order of the disturbance
observer (and, hence, the number of tuning parameters in the adaptive controller), is the approach,
according to which each component δfi of the filtered disturbance δf is considered as the output of
a full-dimensional disturbance generator (a similar approach is used in [18, 20, 28]). Indeed, for δfi
we can write

δfi =
m∑
j=1

wLij(s)[δj ] =
m∑
j=1

h�j wLij(s)[ξj ] =
m∑
j=1

h�j Mijξj + εij

= h̄�i ξ + ε, i = 1, . . . ,m, (20)

where wLij(s) are elements of the transfer matrix WL(s), Mij is the transformation matrix for the
steady-state components, h̄�i = [h�1 Mi1, . . . , h

�
mMim] ∈ R

q is the vector of unknown parameters,
ξ ∈ R

q is the state vector of model (3). The expression (20) motivates us to use a disturbance
observer of dimension q in each channel of the control system, which leads to a dynamic order of
the observer m× q in general and to the same number of tuning parameters. At the same time, the
proposed model (17) can be obtained using a qth order observer (with a static compensator Q(s) –
see Example), the model contains q unknown parameters and, as a result, q adjustable parameters
of an adaptive controller.

The analysis of the model (19) motivates the following choice of the control algorithm:

u = ux + uδ, (21)

where ux is the stabilizing control component and uδ is the compensating control component. The
next two sections of the paper are devoted to separate design of the control components.

4. DESIGN OF THE ADAPTATION ALGORITHM

Choosing

uδ = −Ξθ̂, (22)

where θ̂ is the vector of adjustable parameters, and substituting (21) and (22) into (19), we derive
the model of control error

{
ẋ = Ax+B(ux + Ξθ̃ + ε̄), x(0),

y = Cx
(23)

with the vector of parametric errors θ̃ = θ − θ̂.

Since the state vector x is not measurable, and the matrix A can be unstable, for design of an
adaptation algorithm generating θ̂ we will form a static regression model defined by the following
statement.

Lemma 4. Let us introduce the extended error

ȳ = y − Cx̂− Ξf θ̂, (24)
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where the vector x̂ is generated by the filter (9), Ξf ∈ R
m×qm is the matrix regressor of the form

Ξf =

⎡
⎢⎢⎢⎣
wL 11(s)

[
ξ̄�f1(t)

]
. . . wL 1m(s)

[
ξ̄�fm(t)

]
...

. . .
...

wLm1(s)
[
ξ̄�f1(t)

]
. . . wLmm(s)

[
ξ̄�fm(t)

]
⎤
⎥⎥⎥⎦ , (25)

and wL ij(s) are the entries of the asymptotically stable transfer function WL(s) = C(sI −AL)
−1B

(i = 1, . . . ,m, j = 1, . . . ,m). Then, the following equality holds for the signal ȳ:

ȳ = Ξf θ̃ + ε̄f , (26)

where ε̄f exponentially decays.

The proof of Lemma 4 is given in Appendix.

Model (26) is well known in the modern theory of adaptive systems [36, 37] and identification [38]
and allows using a wide class of standard adaptation algorithms such as:

— gradient adaptation algorithm [19, 36, 37]

˙̂
θ = γΞ�

f ȳ; (27)

— algorithm with improved parametric convergence [19, 39]

˙̂
θ = γ

(
d(s)

[
Ξ�
f ȳ

]
− Ωθ̂

)
, (28)

where γ > 0 is the parameter of adaptation, Ω = d(s)[Ξ�
f Ξf ] is the extended matrix regressor,

d(s) is a minimum phase asymptotically stable positive transfer function with real roots of the
characteristic polynomial and the unit static gain (d(0) = 1). In the simplest case, d(s) can be
selected as the first order block. The convergence properties of the adaptation algorithms (27)
and (28) are defined by the following statement with the proof given in Appendix.

Lemma 5. If assumptions A.1.1–A.1.4 and A.2.1–A.2.3 hold, then

L.5.1. adaptation algorithms (27) and (28) ensure the boundedness of ȳ and θ̂, and also the
asymptotic tendency of |Ξ(t)θ̃(t)| → 0 as t → ∞;

L.5.2. if λ(t) /∈ L1, where λ(t) is the minimum eigenvalue of the matrix Ω(t), then adaptation
algorithm (28) provides asymptotic convergence |θ̃(t)| → 0 as t → ∞ in addition to property L.5.1;

L.5.3. if the regressor ξ satisfies the condition of persistent excitation (in the sense of defi-
nition 4.3.1 from [36] or definition 3.4 from [19]), then adaptation algorithms (27) and (28) in
addition to property L.5.1 provide exponential convergence |θ̃(t)| → 0 as t → ∞.

5. DESIGN OF A STABILIZING COMPONENT AND PROPERTIES
OF A CLOSED-LOOP SYSTEM

Since the vector x is not directly measurable, we use a state observer of the form

˙̄x = Ax̄+Bux + Ly(y − Cx̄), (29)

where x̄ is the state vector of the observer with an arbitrary initial condition x̄(0). Let us introduce
the vector x̃ = x− x̄. Subtracting (29) from (23), we obtain

˙̃x = ALx̃+B(Ξθ̃ + ε̄).
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In relation to property L.5.1 of Lemma 5 we have |Ξ(t)θ̃(t)| → 0, therefore, |x̃(t)| → 0 as t → ∞.

A stabilizing control can be represented as

ux = −Kx̄, (30)

where the feedback matrix is such that the matrix AK = A−BK is Hurwitz. Substituting (30)
into (23), we obtain the model of a closed-loop system.

ẋ = AKx+B(Ξθ̃ −Kx̃+ ε̄).

Since |x̃(t)| → 0 for t → ∞, we immediately get that |x(t)| → 0 as t → ∞, which means that control
objective (4) is achieved. Thus, the following statement was proved.

Theorem 1. Under assumptions A.1.1–A.1.4 and A.2.1–A.2.3, the control law (21) containing
the compensating component (22), the stabilizing component (30), the disturbance observer (9), (18),
the adaptation algorithm (27) or (28) and the state observer (29), being applied to the plant (1),
ensures the boundedness of all signals and the achievement of control objective (4).

6. EXAMPLE AND THE SIMULATION RESULTS

Let us consider an unstable control plant (1) with matrices

A =

⎡
⎢⎣ 4 −6 0
4.5 −7 0
12 −20 1

⎤
⎥⎦ , B =

⎡
⎢⎣2 0
2 0
4 1

⎤
⎥⎦ , C =

[
−2 4 −1
3 −5 1

]

and the transfer matrix

W (s) = C(sI −A)−1B =

⎡
⎢⎢⎣

0
−1

s− 1
1

s2 + 3s − 1

1

s− 1

⎤
⎥⎥⎦ .

In this case, the plant has no invariant zeros and hence is minimum phase.

We assume that δ = [δ1, δ2]
� = [sin t, 1]� is unmeasurable and a priori unknown disturbance,

the first component of which can be considered as the output of the exosystem (2) of the second
order, while the second component can be considered as the output of exosystem (2) of the first
order. Then, we can write

Γ =

[
Γ1 0
0 Γ2

]
=

⎡
⎢⎣ 0 1 0
−1 0 0
0 0 0

⎤
⎥⎦ , H =

[
h�1 0
0 h�2

]
=

[
1 0 0
0 0 1

]
.

If we choose

Ly =

⎡
⎢⎣ 6 6
6 6
10 12

⎤
⎥⎦ ,

then,

AL =

⎡
⎢⎣ −2 0 0
−1.5 −1 0
−4 0 −1

⎤
⎥⎦ , WL(s) =

⎡
⎢⎢⎣

0
−1

s+ 1
1

(s+ 1)(s + 2)

1

s+ 1

⎤
⎥⎥⎦ .
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Finally, for the disturbance observer design we choose

G =

[
G1 0
0 G2

]
=

⎡
⎢⎣ 0 1 0
−6 −5 0
0 0 −4

⎤
⎥⎦ , L =

[
l1 0
0 l2

]
=

⎡
⎢⎣0 0
6 0
0 4

⎤
⎥⎦ .

For the methodological purposes, we calculate the matrices Mξ, H̄, and Mf that are solutions
of the equations (12) and (13), respectively. Then, we obtain nonblock-diagonal matrix

H̄ = CMξ =

[
0 0 −1
0.1 −0.3 1

]

and the singular matrix

Mf =

⎡
⎢⎣ 0 0 −0.33

0 0 0
−0.04 −0.28 1

⎤
⎥⎦ .

It is shown that the direct extension of Lemma 1 to the case of a vector disturbance is impossible
without special methods.

According to the proposed approach, we calculate the transfer matrix of the successive compen-
sator

Q(s) = adjWL(s) =

⎡
⎢⎢⎣

1

s+ 1

1

s+ 1
−1

(s+ 1)(s + 2)
0

⎤
⎥⎥⎦ (31)

and form filtered unmixed disturbance (15). Then, we can show that the following model is valid
for δ̄f :

δ̄f =

⎡
⎢⎢⎣

1

(s+ 1)2(s+ 2)
0

0
1

(s+ 1)2(s + 2)

⎤
⎥⎥⎦
[
δ1
δ2

]
=

⎡
⎢⎢⎣

1

(s+ 1)2(s + 2)
[δ1]

1

(s+ 1)2(s + 2)
[δ2]

⎤
⎥⎥⎦ .

However, according to Lemma 2, the compensator (31) that leads the disturbance to an unmixed
form is not unique. Indeed, in the example, the simple successive compensator

Q(s) =

[
1 1
−1 0

]
(32)

gives the following model of unmixed filtered disturbance:

δ̄f =

⎡
⎢⎢⎣

1

(s+ 1)(s + 2)
0

0
1

s+ 1

⎤
⎥⎥⎦
[
δ1
δ2

]
=

⎡
⎢⎢⎣

1

(s+ 1)(s + 2)
[δ1]

1

s+ 1
[δ2]

⎤
⎥⎥⎦ .

For simulation, the successive compensator (32) is applied.

Simulation results of the closed-loop system with the adaptation algorithm with improved con-
vergence (28) for d(s) = 1

s+1 and two different of γ, the stabilizing control (30) with

K =

[
25.0 −0.91 −8.38
36.25 −4.83 −10.67

]
,
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Transients in the adaptive system closed by the adaptation algorithm
with improved parametric convergence for: (a) γ = 100; (b) γ = 1000.

for zero initial conditions of the plant and the control algorithm are shown in the Figure. The
simulation results demonstrate the achievement of control objective (4) in the presence of external
previously unknown disturbance and the opportunity to accelerate the process of tuning controller
by increasing the adaptation parameter γ.

7. CONCLUSION

The paper presents the solution to the problem of the output-feedback adaptive compensation
of external unknown deterministic disturbances for multidimensional linear systems. The proposed
solution is based on the adaptive implementation of the internal model principle and design of a
special observer, which makes it possible to obtain an unmixed parametrization of the disturbance.
The presented approach allows us to design an adaptive controller with a number of tuning pa-
rameters equaled to the number of unknown coefficients of the characteristic polynomial of the
disturbance model, thereby, reducing the computational complexity of the algorithm compared to
known solutions.
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APPENDIX

Proof of Lemma 4. We rewrite (25) in the state-space form{
Ξ̇x = ALΞx +BΞ,

Ξf = CΞx.
(A.1)
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Then, we introduce an intermediate variable

εx = x− x̂− Ξxθ (A.2)

and calculate its time derivative according to (19), (9) and (A.1):

ε̇x = x− x̂−Ξxθ =Ax+Bu+BΞθ+ ε̄−Ax̂−Bu−Ly(Cx−Cx̂)−ALΞxθ−BΞθ=ALεx+ ε̄.

Due to the Hurwitz property of AL, the value εx(t) exponentially decays.

Then x− x̂ = Ξxθ + εx or

y − Cx̂ = Ξfθ + ε̄f , (A.3)

where ε̄f = Cεx. Substituting (A.3) into (24), we obtain (26).

Proof of Lemma 5. We choose the Lyapunov function

V =
1

2γ
θ̃�θ̃ +

∞∫
t

ε̄�f (τ)ε̄f (τ)dτ (A.4)

and calculate its time derivative in view of (26), the equality ˙̃θ = − ˙̂
θ and the algorithms (27)

and (28):

1. The algorithm (27).

V̇ = −θ̃�Ξ�
f Ξf θ̃ − θ̃�Ξ�

f ε̄f − ε̄�f ε̄f = −1

2
|Ξf θ̃|2 − 1

2
|ε̄f | − 1

2

(
|Ξf θ̃|+ |ε̄f |

)2
� −1

2
|Ξf θ̃|2.

From the last expression, it follows that the signals θ̂ and |Ξf θ̃| ∈ L2 are bounded. Due to the
boundedness of Ξ and the stability of the filter WL(s), the output of linear regression (26) ȳ, and

the derivative
˙̂
θ are bounded. Since the function |Ξf (t)θ̃(t)| ∈ L2 and it is continuous and bounded,

then |Ξf (t)θ̃(t)|, ˙̂
θ(t) → 0 as t → ∞.

According to the swapping lemma applied to multichannel systems (see [19, Section D.2]), we
have

WL(s)
[
Ξθ̃

]
= Ξf θ̃ +WL(s)

[
Ξf

˙̂
θ

]
, (A.5)

where Ξf is the output of the filter (A.1) from Appendix. From the last expression follows conver-

gence WL(s)
[
Ξ(t)θ̃(t)

]
→ 0 as t → ∞ due to the boundedness of Ξ(t), stability of WL(s), and the

convergence |Ξf (t)θ̃(t)|, ˙̂
θ(t) → 0. Since WL(s) is nonsingular and minimum phase, and Ξ̇, ˙̃θ are

bounded, then |Ξ(t)θ̃(t)| → 0 as t → ∞.

2. The algorithm (28). Let us analyze the derivative of the function V taking into account the
Cauchy–Bunyakovsky inequality:

V̇ = −θ̃�Ωθ̃ − θ̃�d(s)
[
Ξ�
f ε̄f

]
− ε̄�f ε̄f = −θ̃�Ωθ̃ − θ̃�(t)

t∫
0

h(t− τ)Ξ�
f (τ)ε̄f (τ)dτ − |ε̄f |2

� −θ̃�Ωθ̃ +

⎛
⎝ t∫

0

h(t− τ)
(
θ̃(t)Ξ�

f (τ)
)2

dτ

⎞
⎠

1
2
⎛
⎝ t∫

0

h(t− τ)ε̄2f (τ)dτ

⎞
⎠

1
2

− |ε̄f |2,
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where h(t− τ) � 0 is the impulse response of the filter d(s). Taking into account, that

t∫
0

h(t− τ)
(
θ̃(t)Ξ�

f (τ)
)2

dτ � cdθ̃
�(t)Ω(t)θ̃(t),

t∫
0

h(t− τ)ε̄2f (τ)dτ � cd|ε̄f |2,

where cd = |d(s)|∞ = 1, we can continue the analysis V̇ :

V̇ � −θ̃�Ωθ̃ +
(
θ̃�Ωθ̃

) 1
2 |ε̄f | − |ε̄f |2 � −1

2
θ̃�Ωθ̃. (A.6)

From the last expression follows that the signals θ̂ and |Ω 1
2 θ̃| ∈ L2 are bounded. Therefore, due

to the stability of the filters WL(s) and d(s), the functions Ω(t) and Ω̇ are bounded. Therefore,

|Ωθ̃| ∈ L2 and |Ω(t)θ̃(t)| → 0 as t → ∞. Since
˙̂
θ(t) → 0, then (see the Swapping Lemma in [40])

d(s)
[
Ξ�
f (t)Ξf (t)θ̃(t)

]
→ 0 as t → ∞. Since Ξ̇f and

˙̃
θ are bounded, then from the convergence

d(s)
[
Ξ�
f (t)Ξf (t)θ̃(t)

]
→ 0 it follows that Ξf (t)θ̃(t) → 0 as t → ∞. Taking into account the argu-

ments mentioned above for the proof of property L.5.1 for the algorithm (27), from the convergence
Ξf (t)θ̃(t) → 0 we have the convergence Ξ(t)θ̃(t) → 0 as t → ∞.

Property L.5.1 is proved.

To prove property L.5.2, we proceed the analysis of the derivative (A.6) taking into account
(A.4):

V̇ � −1

2
θ̃�Ωθ̃ � −1

2
λ(t)θ̃�θ̃ = −γV + γ

∞∫
t

ε̄�f (τ)ε̄f (τ)dτ.

Solving the obtained differential inequality, we have

V (t) � e
−γ

t∫
0

λ(τ1)dτ1

V (0) + γ

t∫
0

e
−γ

t∫
τ3

λ(τ2)dτ2 ∞∫
τ3

ε̄�f (τ1)ε̄f (τ1)dτ1dτ3,

from which it follows property L.5.2.

The proof of property L.5.3 for the algorithm (27) can be found in [37, Section 2.8]. The proof
of property L.5.3 for the algorithm (28) can be found in [19, Section 3.2.3].
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